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ABSTRACT

This study is concerned with developing tools which can be applied to managerial performance

evaluation and/or for directing audit activities for profit-making as well as not-for-profit entities using

multiple inputs to produce multiple outputs. This is accomplished by building on basic concepts of Data

Envelopment Analysis (DEA). In particular, the customary "CCR ratio forms" as described in Chames,

Cooper and Rhodes (1978), are here extended in the polyhedral case specialization of the new "cone-ratio

form" of Chames, Cooper, Wei and Huang (1986). Numerical examples are supplied along with

mathematical developments and geometric portrayals of what is involved, and this is followed by an

example application to the evaluation of large commercial U.S. banks as drawn from Sun (1987).
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INTRODUCTION:

DEA models as in the CCR ratio form of Charnes, Cooper, Rhodes (1978),

sometimes rate many DMUs (Decision Making Units) as efficient when there are

reasons to suppose that this rating is not warranted-e.g., as determined from expert

opinions. An "overabundance" of such efficiently rated DMUs may be related to the

fact that the dual evaluators assigned for the inputs and outputs themselves do not

explicitly take some a priori conditions into account. Any DMU not dominated in some

input or output could then be rated as efficient. That is, a DMU could be rated as 100%

efficient by virtue of being sufficiently strong in only a single input or output, even if that

input or output seems relatively unimportant to persons who are experts in the industry

in which this DMU is located.

Figure I presents an illustration with output isoquant drawn in the input space.

The five DMUs on the isoquant line, Al,. .. , A5, are all technically efficient. However,

if the prevalent price ratio is PI/P2, as shown, then only Al, A2 (and their convex

combinations) are both technically and allocatively (price) efficient. Furthermore, A4

becomes less desirable economically than A6, as shown by the broken lines, even

though A6 is not technically efficient. Thus, only a subset of technically efficient DMUs

may also be economically "efficient" (or viable) in that they fall in the economically

viable range for the marginal contributions of inputs.

A method is desired which can distinguish economically viable DMUs from

DMUs which are only technically efficient, and these results can be used to reevaluate

other DMUs. This can be provided by suitably restricting the cones of input-output

structure used in the multi-criteria optimizations of DEA, which is the key feature of the

cone-ratio DEA models -- viz., they impose relevant constraints on the optimal conical

(or convex) combinations of inputs and outputs through the use of polyhedral cones of

virtual multipliers, which assure the economic viability of efficient DMUs, and/or satisfy

other important considerations.
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I. THE CONE-RATIO DEA MODEL

In order to generalize to infinitely many DMUs and more general conditions that

may impose restrictions on the dual evaluators of outputs and inputs, the CCR model

as in Charnes, Cooper, Rhodes (1978), was generalized by Charnes, Cooper, Wei and

Huang (1986) to the "Cone-Ratio CCR Model,"(here presented only for the finite

number of DMUs case). See CCS 559, Center for Cybernetic Studies, The University

of Texas at Austin, January, 1987.

Vp = Max gT 0

(I) s.t. - OTxR + g,'IyL o

Coe V, l.r U

and its dual (in the DEA form),

VD = Min 0

(2) S.t. -x + OR e -V*

Y X. -Yo e -U*

where X is the mxn input matrix for the n DMUs to be considered and Y is the sxn

matrix of their outputs. V Q ET, U C. E+. are closed convex cones and V* and U* are the

negative polar cones of U and V, respectively.

We use X j and Y j respectively to represent the input vector and output vector

of the jth DMU and assume that X'j e nt (-V*), Yj e [nt (-U*) for anyj. lnt(-V*) = {v:

v'v> 0, for all v' V and v' 0). Int (-U*) ={u u > 0, for all u'e U and u' 0). Int(V*)
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and Int(U*) are not empty since V and U are "acute" cones as defined via
VcEm , UgE. See Yu (1974).

Both (I) and (2) have optimal solutions. With suitable regularity conditions,1 the

optimal solutions are equal, VD = Vp = 11* T YO -< (0* T Yo = 1.

Definition I: DMUo is said to be efficient if there exists an optimal

solution (p.*,co*) of (I) such that

g TY 0 =1

and

*e Int U, (o* E Int V

The cone-ratio CCR model thus extends the CCR model by employing closed

convex cones U and V which need not be nonnegative orthants. If we set

V = ET, U = E+', then the two models coincide. See Charnes, Cooper, Wei and Huang

(1986) for further discussion.

Polyhedral Cones V and U and the Cone-Ratio CCR Model

As long as there are only a finite number of inputs, outputs and DMUs, it may

suffice to employ only polyhedral cones V and U to achieve desirable variants of past

DEA efficiency evaluations. Polyhedral convex cones V and U may be expressed as

V = (ATca: z0}, a e El ,AT = (al, a2 ,.. .,at), a i e E~mi=1, ... J;

(3)

U = (BTy: y tO}, ye E ,BT = (bl,b 2,...,bk), br e E., r = 1,..,k;

and V* = {v: Av:< 0}, and U* = {u: Bu< 0}.

Construction of a polyhedral convex cone V may be illustrated by the following

example. Suppose the DMUs have two inputs. In the CCR model, the ratio of their

1Discussion of the conditions required to eliminate the possibility of a duality gap can be found
in Huang (1985).



5

marginal substitution rate is 0 < 03*1 / 0)*2 < -, where * means optimal. Now suppose

market information sets the range of this ratio as cl 502/e15 _C2, with c2 -Cl > 0.

This can be rewritten as

-0k)2 + C2601 -- 0

(4)

02 - C1 el 2t 0.

Thereby, (0* e V = (CO: CO) O}where

C = 
{A T 

(0 =[1 1

V may also be defined equivalently as (0* e V (AT a: a 0

then -V* = Iv: Av _0). Where

A [1 Ct] a-= at]
1C21 1a2

As will later be seen, polyhedral cones can tighten efficiency criteria in DEA

tests. Before giving examples, we further expose some theoretical underpinnings as

follows.

With U and V as polyhedral convex cones represented in the above form, then,

using (3), problems (I) and (2) can be transformed into,

Vp1 = Max YT (BYo)

s.t. -aT(AR) + f<(BY) 0

(5) aT(AXo) = 1

a > 0, y> 0 ae Et andyE Ek
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VD, = Min e

(6) s.t. - (AX) X + 0 (, o) 0 0

(BY) X-(BYo) a 0

Letting X = AX, Y' = BY, the cone-ratio CCR model then coincides with a

CCR model evaluating the same DMUs but with the transformed data 3 and Y'. Note

that 9° and Y' are strictly positive, since aiT E V, brT e U, and Xj e Int (-V'), Yj e
Int(-U.), , I,..., n; i = I,. .. , t; r = 1, . .. , k.

The following theorem establishes the existence of efficient DMUs for the cone-

ratio DEA model.

Theorem There exists at least one efficient DMU with the cone-ratio CCR model

provided that U and V are polyhedral cones.

Proofs Since U and V are polyhedral cones, after the transformation shown in

problem (5), AXI > 0 and BYj > 0, j - I,..., n. There exists an optimal solution (y', z')

in (5) for any one of the n DMUs, denoted by DMUo , such that

V,, = ,. (SBVo) = and , > 0 and o > 0

Let o" = ATd , 4- BTf . Then .*T YO = -T(BYo) I, and oTX - J'TYY

dzT(AZ) - fT(BY) > 0. Further, co = AT e Int(V), and -- BT e Int (U), since {ATct:

a > 0) e Int(V), and {BTT. y > 0) e Int (U).

Q.E.D.

Since problem (6) and problem (2) are equivalent, an optimal solution ()L*, 0-)

to (6) is also an optimal solution to problem (2). Furthermore, since

U a t V c E, then - a -U* and RP r -V*. Although the conditions for optimal
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solutions of problem (6) are more restrictive than those of the corresponding CCR

model, if DMUo is efficient according to problem (6) (that is, VD = I ), it must be efficient

for the corresponding CCR model.

Now let T . {(X, -Y) : (X, -Y) E (IX, -"qX) + (-V'. -U*), X > 0) be the production

possibility set. Then

Defiii (Xo, -7o) e T is said to be a nondominated point of T associated

with V" x U*, if there exists no (X,-Y) e T such that

(x-Y) eMO -YO) +* r, U'), (x,-Y) 0, (MO, NO)

Given this definition, the following theorem is proved in Chames, Cooper, Wei and

Huang (1986):

Let (Xo, -To) be a nondominated point of T associated with V" x U. Then DMUo

is efficient.

We shall show that an efficient DMU rated by the CCR model will not be efficient

as rated by the cone-ratio CCR model if its facet normal is not contained in the

constraint cone which is employed. Consequently, by suitable choice of constraint

cones we can reclassify efficient DMUs and compare results from the two models for

further insight when desired.

Testing each of the DMUs with the CCR model determines both points on the

efficient (empirical) production frontier and, for each facet, the convex combinations of

associated efficient points, as well as an optimal dual problem solution which is the

normal vector to a *bounding" supporting hyperplane containing the facet. We call

these dual solutions the "facet normals".
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Assume :hat we have M facets from efficiency evaluations using the CCR

model. The normal of each facet is ai = ( ., CO)T E _ +s , i = 1, ..., M. The

corresponding halfspaces are Ai = {Z: aiTZ 2 bi)., the corresponding bounding

hyperplanes are Bi = (Z: aiTZ a bi}, i - I, .. ., M. Z is any of the observed vectors of

inputs and negative outputs (X,-y)T which is contained in at least one A1.

Let
M M

A= n Ai, AJf n Ai.
i=1 i-j

i*j

Suppose we use a subset of the facet normals as spanning vectors for a constraint

cone W, say (by renumbering if necessary)

Note that such a W is an acute cone, and thereby Int(W) is not empty.

Lemma I below (now to be proved), shows that if a facet normal is not in W, then

the associated efficient DMUs are no longer efficient under the cone-ratio model

associated with W. In other words, these DMUs are dominated in the negative polar

W.

Lemma I
If aJ is not in W, and Zo e B I r Int(AJ), then Zo is not a nondominated point of A

associated with W*. I.e., there exists Z e A, such that Z e o + W" / {0).

Prof.- Suppose, on the contrary, that there is no Z e A such that

Z e Zo + W" / {0). Let S - (s: s e W' / {0) - Z+Zo , for some Ze A). It is easy to show

that S is a convex set and 0 is not in S. By the separating hyperplane theorem for

convex sets, there exists nonzero p e Ern+s such that pTs < 0 for all s e S.

For any Z e A. X > 0 and w e W / (0}, let Sz,x,w = -Z + Zo+Xw. Then

pT Zo + XpTw: pTZ for all Z e A.AX.> 0, and w e W" / {0). Hence,
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(a) pT pTZ for all Z e A

(b) pT w r 0 for all w r W / (0}

From (b), since W is an acute cone, p e (W' / {0))*= W.

Now consider the system
(C) pTZ<o

aJTZ = 0 o

There must exist a solution 2 to (c). Otherwise, for all Z satisfying al" Z = 0, we would

have pTZ = 0. In that event, there must exist a scalar h such that a" = hp with h > 0

since ai z 0, and p > 0. This leads to aJ e W, which contradicts our assumption.

Now let Z be a solution to (c) and consider the point (o- 3Z). Zo e Int(AJ) and

a7 Zo > bi for i * j. There exists a < 0 such that for i * j, aiT (Zo-0.) = aiTZo - 3ai-TZ z bi

for all P e [a0) and a T (Zo-iz) ,a ajZo - aJTz - ajT Zo = bj. That means (-o -04 Zc A.

But, pT(Zo - Z - pTZo - pT 2 < pTZo for all P e [a,0), that contradicts (a). Hence, there

exists Z e A such that Z 0 + W {0).

Q.E.D.

From alT (Z-2) -- bj we know Zo is in fact dominated by another DMU that is an

extreme point located on the same facet. Note that Zo is not an extreme point of AJ

since Zo e Int(AJ). Hence, from Lemr/a I, we immediately conclude

Theorem 3

A DMU which is evaluated as efficient by the CCR model is inefficient with the

cone-ratio CCR model if its facet normal is not in the constraint cone employed.

We proceed next to
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Theorem 4

An efficient DMU which is evaluated by the CCR model is still efficient under the

cone-ratio CCR model if (p*, co'), its optimal dual solution to the CCR model is in

the constraint cone (U,V) of the cone-ratio CCR.

Proo~f: Consider problem (I) for the cone-ratio model and the same problem for

the CCR model which replaces the conditions oe V, ge U in (I) with co, g > 0. Let (.*,

Wo*) be an optimal solution to the latter problem. (i*, co* ) is a facet normal that is in

the constraint cone, i.e., g* e Int(U), co* e Int(V). Hence, it is a feasible solution to (I).

Since the optimal functional value of (I) < 1 and p. Yo = I in the CCR model, (p.',co°)

must be an optimal solution to problem (I)

Q.E.D.

These theoretical conclusions are of practical importance. They make it

possible for us to employ expert knowledge for evaluation in a DEA analysis and to do

so without unduly straining that knowledge. For example, we can use the desirable

input-output structure of economically viable DMUs as spanning vectors for the

constrained cone and thereby evaluate economically efficient DMUs. The input-output

structure of a DMU can be represented by its optimal dual evaluator vector. We shall

illustrate by using this approach in the evaluation of the managerial performance of

commercial banks in Section 3.

2. SELECTION OF CONES FOR VARIOUS PURPOSES

We now employ the polyhedral cones U and V to tighten the criteria for

efficiency evaluations of DMUs. These cones may be classified further into (a) those

which emphasize individual inputs and/or outputs; and (b) those which favor individual

DMUs.
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Classification (a). Cones Emphaslzina Inputs and Outbuts

Example I

We are to evaluate 4 DMUs which use two inputs to produce one output. The

observed data are:

DMU 1 2 3 4

11 1 4 1.5 4
X2 5 1 1.5 2

Y

The CCR model will evidently identify DMUI, DMU2 and DMU3 as efficient. Let

us examine their efficiency again with a polyhedral cone-ratio model. For simplicity,

we constrain only cone V and set U = E_.

Let V -{AT: a a 0), then -V* -{o: Ao) 0).

AT .= I ~

so we have -V ={o: Ol + a1 w2 k 0, a 2 1 + w2 a 0}. See Figure 2.

This is equivalent to using the CCR model to determine efficiency with the

transformed inputs X = A X and the original output 1 as represented in the following

arrangement.

DMU 1 2 3 4

Xr 1+5a 1  4+a I  1.5+1.5a1  4+2a1

r a2+5  4a 2+1 1.5a 2+1.5 4a 2+2

Y 1 1 1 1
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If a1 is sufficiently small and a2 sufficiently large, the transformed data are

equivalent to

DMU 1 2 3 4

" 1 1 4 1.5 4

X2 a2  4a2  1.5a2  4a2

y 1 1 1 1

since a1 is dominated by the observed value of 7; and a2 dominates the observed

value of X2. Only DMU 1 which originally used the least X; can survive the efficiency

test under the constrained cone.

Conversely, if a2 Is sufficiently small and a1 sufficiently large, only DMU2 which

originally used the least R2 will remain efficient. For the same reason, the transformed

data are equivalent to

X2

4\

3

3 4
2 2

1 Xl.

PLS. 2



13

DMU 1 2 3 4

X 5a I  al 1.5a1  2a1

X2 5 1 1.5 2

7 1 1 1 1

In the first case, V is heavily tilted toward input X;. This shows that more

emphasis is now put upon X;. As a result, conserving X becomes of key concern. It is

not strange that only DMUI, which consumed the least X;, can survive this condition

seriously favoring 3E. On the other hand, in the second case, emphasis is directed to

X2 and it makes conservation of X2 much more desirable. Hence only DMU2 remains

efficient. In the graph, cone V tirted toward axis Y; in case two. See Figure 3a and 4a.

A convenient way to Interpret the implication of these cones is to link them to the

nondominated solution in the multi-objective programming problem. DMU2 and

DMU3 are dominated In the polar cone -V* by DMUI in case one; DMUI and DMU3 are

dominated by DMU2 in -V* in case two. (Fig. 3b, 4b).

We see from the above examples that a constraint cone tilted toward any

objective (input and/or output) emphasizes that objective. This provides us with the

possibility of taking account of different concerns for objectives which may not be

explicitly rendered in the observed quantities themselves.

Classification (b). Cones Favoring DMUs

First, let us look at a special case that excludes "weak efficient" DMUs, i.e., a

case that ensures strict positivity of (W±, co) In problem (I). Then, DMUo is efficient if

4rYo I. We need to construct a constraint cone to exclude the hyperplanes (0,a2,..

an), (al,0,.. .,an),. .. . ,(al,a2,..., 0), but to include (0,0,... ,0). So we may set
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X2

4

3

3 4
2

v 2

FIPg. 3a.

X2

.4

3

34

2

1 2 3 5 X1
V.

Fig. 3
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X2

4

.3

3 4
2 V0

2

1 2 3 4 5xi
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X2

V *

3

% 3

2

V&.x
Fig. 4b
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where e is an arbitrarily small positive number. Bsxs is of the same matrix form for

output transformation.

Example 2 is designed to illustrate how to detect the weak efficient DMUs using

the above approach.

Example 2

We are to evaluate the performance of 17 DMUs. Each DMU uses 2 inputs to

produce I output. The observed data are

DMU Y %1. '2 Y Xl x2

DMU 2 10 10 DMU10 2 4 30
DMU2 2 20 5 DMU11 2 6 15
DMU3 2 30 4 DMU12 2 6 15
DMU4 2 27 9 DMU13 2 7 13
DMU5 2 14 8 DMU14 2 40 5
DMU16 2 5 20 DMU15 2 20.5 4.9
DMU7 2 4 20 DMU16 2 4.1 19.5
DMU8 2 12 18 DMU17 2 5 15
DMU9 2 8 12

Since the DMUs are all at the same output level, we can draw an isoquant

curve in the input space as shown In Fig. 5. Consider DMU3 and DMUIO. They are

scale but not technically efficient, i.e., 0* = I but the slacks of inputs are not all zero.

Specifically, the slack of Input I Is 5 for DMU3 and the slack of input 2 is 10 for DMUIO.

While they may be termed "weak efficient", they are not really efficient at all. But DMU3

and DMUIO seem to be fully efficient. (The 0* of both are listed as 1.0000.) If the slack

is not large, the product of it and a very small real value standing for e (e.g., a choice of

10-6 in the computer code) can produce round-off effects. However, we can use the
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polyhedral constraint cone described above to uncover the true inefficiency of these

DMUs as follows. Take

0= 1 .01
0 A 0 .01 11

x2
30O1

25

20 1

15
13

9"

10 :

5 1 12 3

0 5 10 15 20 25 30 35

Fig. 5
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With the transformed data (BY,AX), we get 0* of DMU3 and DMUIO as .9884 and .9767,

respectively. Their inefficiencies are thus disclosed as in Fig. 6.

The next example illustrates an application of the polyhedral cone to identify the

economically efficient DMUs.

Example 3

We use the same data as in Example 2. From the optimal solutions to the CCR

model, we obtain four facet normals for the four facets. Now assume that market

information indicates that the price ratio of inputs Ki and X2 are in the range kt to k2,

and DMU managers want to adjust their input consumption accordingly. If kt = 1/5, and

k2 = I, only the efficient DMUs whose 6*2 / ce1 are in the range (1/5, I) are economically

efficient.

From Figure 7, we see that we can use the C of facet I and facet II to establish

the cone. Thus we take
1 0 0

0 A J .125 .025
0 .05 .05

Evaluating with the transformed data (BV,AX), we obtain the new efficiency scores
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x2 1

20 1

25
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x2 \1 o
30 \1

25l

Fi.
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DMU SCORE DMU SCORE

DMUI 1.0000 DMU10 .3333
DMU2 .8000 DMU11 .9524
DMU3 .1923 DMJ12 .6897
DMU4 .5556 DMU13 1.0000
DMU5 .9091 DMU14 .4444
DMU6 .8889 DMU15 .7874
DMU7 1.0000 DMU16 1.0000
DMU8 .6667 DMU17 1.0000
DMU9 1.0000

For a two input case, as in this example, we may illustrate the constraint cone

with the nondominated solutions associated with the negative polar of the constraint

cone. Here, in Figure 7, we see that DMU2, DMU5, and DMU15 are no longer efficient,

since they are located on facets whose normal directions (6*1,d 2)T fall outside the

range (1/5, I). But DMUI, which Is originally on facet III, is still efficient. As a matter of

fact, its o" could be any value between the normals of facet II and facet I1l. With the

constraint condition, DMUI takes the normal of facet II as its new facet normal. To see

this, note that DMUI is an extreme point. Recall that from Lemma I contrarily, Zo ,, -

yi)T e B1 but it is not in Int(A1).

Take DMU2 for a further example. Under the constraint cone, its efficient

projection is to facet II where DMUI is located. Using the data for DMU1 , the bounding

hyperplane is (z, -10) = -(Z2 -10) while from the data for DMU2, 4XI - 92. After solving,

we therfore have (x1, Y2)° = (4, 16), which is the efficient input usage for DMU2 under

the constraint cone and the point on the frontier to which DMU2 projects. DMU2's new

efficiency score is

0.8000 M (42+ 162)/2

From Figure 7, again, we can also easily see that the economically efficient

input usage for DMU14 is (20/9, 160/9). It is the economically efficient point to which
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DMU1 4 projects. The corresponding efficient score (.444) is the ratios of the distances

of the efficient point to the observed point.

We have thus illustrated how a constraint cone can be selected to favor desired

patterns of input usage and output production in efficiency evaluation. Further, as

shown in Charnes,Cooper, Wei and Huang (1986) as well as in Sun (1987), these cone

ratio approaches can be adapted for use with other models, such as the "additive"

model, which embody the DEA concepts and methods of computation and analyses.

3. APPLICATIONS TO COMMERCIAL BANKS

We turn next to a realistic application to large commercial banks. As reported in

Sun (1987), the data involved were drawn from the call reports (1980-1985) to the FDIC'

for 48 U.S. commercial banks drawn from the top 300 banks headquartered in

America which are also members of FDIC.

Using expert advice from a banking specialist the following outputs and inputs

were used in this study:

Outputs: Inputs:

1. Total Operating Income 1. Total Operating Expense
2. Total Interest Income 2. Total Non-Interest Expense
3. Total Non-Interest Income 3. Provision for Loan Losses
4. Total Net Loans 4. Actual Loan Losses

To be noted is that the provision for loan losses and actual loan losses treated as

inputs are indicators of risks in banking operations. Total net loans is a measure of the

size of services that a bank produces while the other inputs and outputs are mainly

profit related measures.

1The supplemental data and expert opinions used are described In Sun (1987)
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The results obtained from the CCR ratio model as applied to the data for these

inputs and outputs were not satisfactory so recourse was made to a polyhedral cone-
ratio DEA model with results that passed muster in subsequent reviews by experts with

wide experience in banking.

Here we only provide a pair of examples to show what occurred and to show

how the CCR model and its cone ratio extensions were used. For the first example, we

use Citibank which, for 1983, showed the results listed under the column headed Value

Observed. The column headed CCR model in this same Table shows the values for

efficient performance as estimated by this model. The values exhibited under the

column designated as cone-ratio CCR show the values which efficient performance

would have exhibited as estimated with the cone-ratio CCR model.

As can be seen, the values in the latter two columns differ. The CCR model

rated Citibank performance as efficient but the Cone-Ratio CCR model did not.1 The

value of e -- 0.9693 obtained from the latter model applied to all of the observed input

values produces the values shown for these same Inputs In the last column with the

result that these inputs are all reduced by about 3%.

Turning to the ouput values, we obtain the adjustments needed for efficiency

attainment by means of the formula

j=!

where the Yj are the vectors of observed values which correspond to the efficient

DMUs used in the evaluation of DMUo and the Xj are the optimal solution values. Yo

is the value corresponding to the point on the efficient facet from which the outputs

observed in Yo are evaluated.

The cone, -atio additive model also rated Citibank as 100% efficient In 1983.
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In the case of Citibank's 1983 performance, the banks appearing in the optimal

basis--and thus the banks used in evaluating the efficiency of Citibank's performance--

are the Republic National Bank of New York and Texas Commerce Bank, with X1.

values of 2.85 and 12.22, respectively. Applying these values to the 1983 data for these

two banks produced the results for the output values shown in the upper part of the last

column in Table 3. Comparison with the observed values for Citibank showed that this

would have resulted in a decrease of total income by some 1%, a decrease in interest

income of 6% and a decrease in non-interest income by 50% whereas net loans

would have increased by 19%. To be noted, therefore, is the fact that the reduction of

inputs (by some 3%) may then be accompanied by a decrease in some outputs and an

increase in others.

TABLE 3

CnBANK (1983)

VALUE OBSERVED VALUE IF EFFICIENT

CCR MODEL CONE-RATIO CCR

OUTPUT

Total income 13572000 13572000 13443860

Interest income 10615000 10615000 10020451

Noninterest income 553000 553000 271151

Net loans 69286000 69286000 82397984

INPUT

Provisions 320000 320000 310176

Total expense 12171000 12171000 11797350

Noninterest Expense 3061000 3061000 2967027

Loan losses 263000 263000 254926
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For another example, we turn to Continental Illinois for 1984 which is known to

have been a disastrous year for this bank. The data for this case and the

corresponding CCR model and cone-ratio CCR model estimated efficiency adjusted

values are shown in Table 4 which has the same arrangement as Table 3.

In this case, the CCR model gave a value of 0' = 0.919 which was reduced to

0.2351 by the cone-ratio version of this model. Evidently a drastic reorientation of this

bank's activities is signaled by the latter value, as was subsequently confirmed by the

complete overhaul initiated with the FDIC bail-out attempt for Continental Illinois.

Turning from the inputs to the outputs for Continental Illinois in 1984, we observe

that Wachovia National Bank and Trust Co. is the only DMU appearing in the basis

from which Continental Illinois was evaluated. Thus applying the value of Xj = 4.74 to

the data for Wachovia In 1984, we obtain the new Y*o output values for Continental

Illinois which are shown in the last column of Table 4. Associated with this nearly 77%

reduction in its Inputs, as shown In Table 4, Continental Illinois might also have

increased its total income by 5% and its interest income by some 14% and 147%,

respectively, while decreasing its total loans by nearly 4%

4
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TABLE 4

CONTINENTAL ILLINOIS NB & TC (1984)

VALUE OBSERVED VALUE IF EFFICIENT

CCR MODEL CONE-RATIO CCR

OUTPUT

Total income 3998187 3998187 4209945

Interest income 3334291 3334291 3380729

Noninterest income 70064 96783 172986

Net loans 23693936 24791577 22922308

INPUT

Provisions 1171878 143749 275509

Total Expense 3703887 3405380 870784

Noninterest expense 779890 717036 183352

Loan losses 1165487 96907 274006

Figure 8 provides a geometric portrayal which can illustrate what is happening

in the above cases. As is evident from these examples, output adjustments to attain

efficiency in the case of the cone-ratio model need not be limited to movement in the

"northeast" direction, as is true for the CCR model. Thus, in the case shown in Figure

8, the output adjustment for DMU5 is restricted to projections on AN. In the cone-ratio

CCR model, however, the projections can be to BB'.
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SUMMARY AND CONCLUSIONS

This extract from a more extended study should help to show some of the

differences that may be expected as opportunities vistas for research and use are

opened by the cone-ratio ,xtensions of DEA. Evidently a good deal of flexibility is

added and ways are opened for the use of expert opinion without strain since a

knowledge of only ranges of values with associated inequalities need be employed.

Needless to say, these uses can also provide guidance and act as a control on such

opinions.'

These cone ratio developments open other possibilities as well. For instance,

the deficiencies exhibited by the ordinary CCR ratio model may reflect rather the fact

that FDIC call report data are insufficient to provide all of the indicators needed to

distinguish between efficient and inefficient performance. 2 Indeed, as shown in

Charnes, Cooper, Golany, Halek, Schmitz and Thomas (1986), uses of DEA admit of

extensions that include "goals' which might be specified for attainment as well as laws

or regulations, risk factors and/or economic "climate". Finally, cone-ratio extensions

can be applied to the elimination of activities and/or merger schemes along the lines of

what was done in Bessent, Bessent, Chames, Cooper and Thorogood (1983).

In any case, the basic ideas and principles have been set forth in the preceding

discussion and the mathematical details have been set forth with full rigor in Chames,

Cooper, Wei and Huang (1986).

1See, e.g., the discussion In Thomas, 1986, of the way DEA was used to guide and evaluate the
performance of the auditors of the Texas Public Utility Commission In their managerial audits.

2See the similar comments In Divine (1986) on the use of DEA for effecting bond-rating
evaluations for electric utilities which are more comprehensive than the ratings provided in
Standard and Poors or other bond rating services.
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